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Abstract. A method is developed to weat the constraints in the spin wave theory and a new 
Hermitian Bose transformation dewrated by all constraints is found which is different from 
those of Holstein-”akoff or the Dyson-Maleev. The transformed Hamiltonian includes 
both dynamic and kinematic interaction and it has been canfined in physical proper space 
automatically. A model Hamiltonian which has completely same eigenvalues is presented and 
a scheme of approximation is described. 

1. Introduction 

The spin wave theory (Sm) has had a long history. Some Bose. transformations have 
been introduced, such as the Holstein-Primakoff (HP) 111, Dyson-Maleev (DM) [2,3] and, 
recently, the Schwinger boson (SE) [4,51 transformation. The most difficult problem is the 
constraints in Bose transformations which are not included in the transformed Hamiltonian. 
In principle, the transformed Hamiltonian is not equivalent to the original one so that it must 
be confined in physical proper space (PS). In HP and DM theory, PS means that the number of 
bosons at each lattice site must not be greater than 2.9 where S is the spin quantum number. 
Such additional constraints make the sWT very complicated and have been overlooked in 
many published papers. In the case of large S and a three-dimensional (3D) system, the 
excitation of the boson in non-physical space (so-called improper physical space (IPS)), 
relates to the large fluctuation of spin and is small at low temperature .for ferromagnetic 
system. However, it may become large for low-dimensional systems, especially for the 
antiferromagnetic system. Therefore, the additional interactions induced by those constraints 
in HP or DM theory must be considered carefully and it may be significant in some properties 
of the system. The SB theory has become more popular recently in the study of the strongly 
correlated electronic system and two-dimensional (2D) antiferromagnetic systems. The 
constraints of Bose transformation in SB theory require that the total number of Bosons 
with both spin up and spin down at each site must be 1. Lagrange multipIiers pi have been 
introduced to incorporate the constraints into the transformed Hamiltonian, then a mean-field 
approximation is taken to substitute all {pi ]  with an average value p. However, the mean- 
field approximation for the constraints may not be valid for low-dimensional systems since 
the fluctuation is large. In many cases, calculation beyond the mean-field approximation 
may be necessary. In some previous works, we developed a method of step operator (ST) 
[6,7] to treat the constraints for 3D ferromagnetic and antiferromagnetic systems. In our 
method, the constraint of Bose excitations was transformed to some additional interactions 
in the Hamiltonian. It gave us a way to consider both dynamic and kinematic interactions 
completely. Recently, Wrobel and Barentzen have presented a unique boson expansion 

0305-4470/94/113621+14$19.50 @ 1994 IOP Publishing Ltd 362 1 



3622 Ruibao Tao 

for a spin system [8]. In fact, their transformation in total Bose space is exactly equal 
to our previous results [6] cited by the authors. Although the transformed Hamiltonian is 
exactly equivalent to the original one, it is too complicated due to the existence of globe 
constraints. Reference paper [SI gave an example for the 1D isotropic Heisenberg system 
and only considered the second term in the interactions that include both the dynamical and 
kinematics. It is necessary to study a more general scheme of approximation to treat such a 
complex Hamiltonian. In this paper, a much simpler model Hamiltonian has been presented 
and proved to have exactly the same eigenvalues as the original one. Therefore it could 
be possible to do the calculations in considering the kinematic interactions. We will give 
an example to show how we renormalize the total interactions including both the dynamics 
and statistics for the 3D antiferromagnetic isotropic Heisenberg model. More applications 
will be presented in separate papers. 

One of the purposes of this work is to reformulate our previous method in a more 
systematic manner for treating the constraints in the transformations of angular momentum 
to Bose operator. In section 2, an introduction to the representation of the step operator 
which was published in a Chinese journal [6] will be given. Meanwhile, we will present 
some new considerations. In section 3, a new Hermitian Bose transformation of spin 
operators is presented. The Hamiltonian of magnetic systems is transformed by means of 
our new Hermitian transformation and their equivalence is proved in section 4. Additionally, 
an equivalent model Hamiltonian which is simpler and has exactly the same eigenvalues as 
the original ones is presented and a new scheme of approximation based on the correlation 
functions is also described. An extension of our hamformation to the SB theory is given in 
section 5. An example to show how we can renormalize the interactions in the transformed 
Hamiltonian is given in section 6 for the isotropic antiferromagnetic Heisenberg model. 

2. Introduction of the step operators 

According to [6], the step operator in Bose space is defined by 

eiln)i = In); 0 6 ii < 2s  
= O  n > 2 S + 1  

where In)i denotes the excited state with n bosons at the ith site. In general, any state in 
Bose space related to the ith site can be written 

I W i  IP)i + IOi (2) 

where IP)i is the component in proper space and 11)~ the component in improper space in 
which the number of bosons is greater than 2s. 0; has the properties: 

Therefore, 0i is a projection operator to the proper space and can be generally represented 
by 
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where a! (or ai) is the creation (or annihilation) operator of bosons at the ith site. (Bi )  are 
some coefficients. We have 

(5) a,i'af = nj(nj - l)(ni - 2). . . (ni - 1 + 1). 

where ni = a/aj. If we put equation (5) in (4) and use the conditions (1). then Bj can be 
found [6] as the following 

I 1  1 = o  

(6) 
1 < 1 < 2 s  

1 > 2 s  + 1. 
(-l)(l-=)(l- 1)(1-2)...(1-2S) 

B1= Io  1!(2S)! . .  
Expression (6) of Bi can easily be checked. If we put (4). (5) and (6) into (l), then it can 
be found that 

] 12s + n)i 
(-l)k(n + 2S)! 

ei'2s + n,  = [I + ,, (n - k)!(k - l)!(k + ZS)(ZS!) 

= -(2S)!/(n + ZS)! . 
Therefore, 

ei12S+n) = O  n > 1. 

[e,, nil- = o 
It is easy to obtain the following equations: 

where 
I 1  1 = 1  

2 , < 1 , < 2 s  

1 > 2s + 1. (- l)(i-2"2s 
cl= Io (2S)!(1 - 1)(1 - 2s - l)! 

For example, for S = i, 
Bi = (-1),-'(1- l)/l! 1 > o  (14) 

c, = (-l)'-ll/l! 1 > 1. ( 1 9  
For a more general S, expressions (6) and (13) can be rewritten into a simpler form: 

BI = (-l)[-'(l - 1)(1- 2)... (1 - 2S)/[(2S)!Z!] 1 > 0 (16) 

Cl = (-1)'-'1(1 - 2)(1- 3).  . . (1 - 2S)/[(2S - l)!l!] 1 > 1. (17) 
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3. Bose transformation of spin operators 

There are three spin operators {S,:, ST, S;} for each lattice and they satisfy following 
commutation relations: 

If we apply the transformation ( E )  from the Hilbert space of the spin Hamiltonian to the 
Bose one: 

ZS,:T-I --f f ( a j , a , )  t 

T,S:q-' -+ f ( U i ,  t ai) 

then the general form of the mapping can be represented by 

The position of 6, in expressions (20) ensures that the space we work on is PS. Let us further 
define the mapping of SL: 

where (Dk) has been derived and is 

It can be found that 

i f k = O  
i f k = l  
if 2 < I <  2s 

From the definitions of (20) and (21), all coefficients ( F d  can be determined by means of 
the conditions of commutation (18). As an example, we discuss the most interesting case 
of S = and we have 

w,, eiafi- = -z[-; +afa,i. (23) 
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Therefore, F1 must be 1 and all others {I$) zero. In this case, the transformation is 

. 

where (ck} is defined by (15) and 

Dw = (-l)k-l(k + 1)/2(k!) k > 0. (25) 

It can also be checked that all commutators of spin operators (S;, S t ,  Sf] are satisfied and 
the transformation (24) is Hermitian. 

The physical system has N sites; any physical state in Bose space must be in PS for 
each site. Therefore we must introduce a total projection operator 0 to the Hilbert space 
of N sites. It is defined by 

TSFT-' = piai 

TS:T-' = piat 
= PimCiz,  Fkay-'af0i 

= ~ , ~ i l / z s  E:, Fka!k-'af 

. TS:T-' = P i X L  DkaFaf. 

The following general transformation T must be done in the generalized spin wave theory: 

k=l 
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where 

For example,'for S = 1: 

(31) Fi = 1 Fz = 1/&- l, . . .  Fx = 0 (k > 2) 
ci = (-l),&l- (A+ l)]/Z! 1 > 1. 

It is not too difficult to find the {Ck) for the case of larger S. 

4. Transformed Hamiltonian and approximation 

We have introduced the Bose transformation T ,  which is Hermitian, in the previous section. 
In general, the Hamiltonian for a magnetic system has the form: 

where Hij is the Hamiltonian of a pair of sites { i ,  j ] .  After our new transformation, the 
Hamiltonian becomes 

H' = THT-'  
m 

= Pi, &j (33) 
i # j  

where 

As we know from the last section, the transformed Hamiltonian H' is now exactly the same 
as H. 

From the definition of equation (38), we have 

[P,,, Bijl- = 0.  (36) 

Let us now define a model Hamiltonian fi as follows: 
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If E is an eigenvalue of the model Hamiltonian 8 and the eigenstate I@), then 

If PI@) # 0, E is also an eigenvalue of the transformed Hamiltonian H' with the 
eigenfunction PI@). Meanwhile, if E is an eigenvalue of the Hamiltonian H' with the 
eigenfunction I@), then we must have 

PH'I@) = 

8PI@) = EPI16-) (39) 

RI@) = El@). 

Therefore, the eigenvalues of H' can be found from those of the model Hamiltonian 8. 
The relative eigenstates can be obtained from the projection to PS. Hence, we can study the 
model Hamiltonian 8 instead of H'. Our transformation seems a little more complicated 
than HP and much more so than DM since there are more terms in our Hamiltonian. However, 
those additional terms just describe the kinematic interaction which has been missing in HP 
and DM and may have a significant effect on the system in some cases. In which case, our 
transformation may have the advantage of studying both the dynamic and kinematic effects 
on the spin-wave properties. Meanwhile, our transformation is Hermitian, as is HP, but 
not DM. Therefore, we have found a complete and exact Bose transformation for magnetic 
systems. 

Let us divide the Hamiltonian 8 into two parts: 

8 = eo + 8, I = H - Ho. 

80 is selected as an unperturbed part and the remainder one, 81, is considered as 
perturbation. 80 has solution: 

8010) = EOlO). (41) 

According to perturbation theory, the eigenvalue E and eigenfunction [@) can be written 
as follows 

where E, and In) are the nth order corrections from the perturbation 81. In general, the 
eigenstate 10) of HO may not be a vector in PS and has some component in the improper 
space. However, the eigenstate of 8 should be in Ps so that the eigenfunction of 8 with 
energy E must be 

IW =PI@) 
= PIO) + PI1) + . . . + Pln) + . . . 
= 16) + ii) +.. .+ l i i)  + .. . (43) 
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1;) = Pin). (44) 

In the first-order approximation. we assume the wavefunction to be 

IY) = 16) = PIO) (45) 

then the energy 

' E zz (6lfi[6)/(6 16) 
= (OIi7PIO) /(OP 10) 

+... 

where k = n.n., represents the sum of k taken through all of nearest neighbours of sites i 
and j, and (01'. . IO)= denotes an average only for linked terms where the diagram should 
include one link at least between the k site and i or j. Hence, we have a scheme of 
approximation based on the correlation of sites. It is believed the terms with higher-order 
correlation will give higher-order contribution. If one did a higher-order approximation, 
then the term PI 1) may be necessary in some cases. It is a way of doing some calculations 
beyond the mean-field approximation for the constraint in transformation. An application 
to the ground state of the 2D isotropic antiferromagnetic Heisenberg system will be given 
in separated letters. 

5. Bose representation of constraint in the Schwinger boson transforriation 

The spin operators are &presented by two Schwinger bosons [4,5] (m =t, $), namely 
[bi+,, bir,m,l =&id,,,, with the constraint: t 

b!?bi+ + b/$bi$ = 2s. (47) 

The transformation is 

If we discuss the most interesting case with S = 4, the projection operator Pi to describe 
the constraint (47) can be represented as follows: 

Pi = (nit + niJ - 2nit . ni~)ei tel l  (49) 
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where e,, is the step operator defined in section 2. Using equation (12). we have 

3629 

where ICk) is defined by (15). If we define CO = 0, then the operator Pi can be written as 

P, = Pi, + Pi, 

where 

(541 

(55) 

For the same reason as in section 3, we should introduce the total projection operator &: 
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6. An example for a 3D antiferromagnetic system 

The three-dimensional (3D) isotropic antiferromagnetic Heisenberg (IAFH) model has been 
studied many years ago [9]. Its problems seemed to have been resolved. However, in most 
papers, only the dynamic interaction of the spin wave was considered. The kinematic 
interaction induced by the constraints in Bose transformation was generally neglected. 
In the antiferromagnetic case, particularly for the case S = $, there are large quantum 
fluctuations which will induce a certain amount of the excitations of the spin wave even 
at zero temperature. The probability that the number of bosons at each site is larger than 
2S+ 1 will not be negligible, so we must consider the constraints for Bose excitations. Our 
complete Bose transformation has given an exact equivalent model Hamiltonian. It may 
provide a method of calculating the total contribution from both the dynamic and kinematic 
interactions. As an example, we will give the calculation of ground-state energy for the 3D 
IAFH model for the case S = i. The application to the case of the ZD IAFH model with a 
square lattice may be more interesting and will be presented in a separate paper. 

The Hamiltonian of AFHM is 

where the coupling, J(f - g), is positive and nearest neighbour. Let us divide square 
lattices into two sublattices F and G and do local Bose transformation: 

C[+I = (-l)l/l! DI = (-l)l+l(l+ l)/l!. (62) 

Similarly, we can also find the The transformation of Sff is the conjugate of S;. 
transformation for the sublattices G. 

The local constraint on the excitation of the spin wave in the transformation has been 
included automatically. The transformed model is 

where S; and Si are defined by (61) and (63). The Hamiltonian H can be expressed as 

H = U0 + H2 + HI (66) 
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where U, = -9 and HI describes the interaction of spin waves. Hi can be diagonalized 
by means of the Bogolubov transformation. The excitation energy of the free spin wave in 
the representation of Hz’is 

yk = (cosk,d + COS k,d)/2 (69) 

where d is the distance between the nearest-neighbour sites. In the representation of the 
free spin wave, the averages (uJb,), (a,+!), (U$;,), (up,-,), (bdb;,) and (bgbg,) must be 
zero and 

(UJU,., = f (f - f‘) - ;s,,r. 
(bibp‘) = f@ - g’) - k8g.g’  

(70) 

(71) 

(72) 

(73) 

n = (u,.q) t =~(b$~,)  

(UJb;) = (a@,) = g ( f  - g) 

We can calculate the average (H) in the representation of the free spin wave by means of 
the Wick expansion theorem without any approximation. For example, 

(uFu;) = k!(uJq) = k!n (76) 

(ajb;) = k ! g .  (77) 

From the Bose representation (61) and (64) of Sz. we have 

where X = gz/nz. If we define 

m 

f (n) = Dkk!nk 
k=l 
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m - 
= C(-l)'+'(k + l)k(k - 1)nk 

k=l 

where we have denoted the f k ) ( n )  as the kth-order differential of functions f(n) with n. 
Therefore, we can obtain 

(~ ' ,y)=?.-I  1 
f ,f(n) + $ f W  + ${(n2x)f'(nY + ~ ( n 2 x ) z f ( z ) ( n ) z  

+ -(nZX) f (n)2 + . . . . (82) 3 (3) 1 
(3!)2 

Because 

f'k)(n) =(-l)k+'(k+l)!/(l+n)ktZ k =  1,2,  ... (83) 

we have 

w = (nZx)f'(n)' + -[f'z)n)]2(n2X)2 +. . . + -[f"'(n)]2(n2X)k + . . . . 

Since 

1 1 
(2!)Z (k!)2 (84) 

we have 

Let us define 
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The result of (3s;) is 

1 Z(4 - 3 2  + 22) - - 
4(1 +n)4 + 4(1+ n)4(l - 2)3 

4(1+?1)~(1-2)3' 
- 1 + Z  - 

Similarly, we can obtain 

Finally, we obtain 

( H )  =-  

where 

In the 3D case, we have 

0.078 for NaCl type 
0.059 for CsCl type 

n =  [ 
and 

0.1265 for NaCl type 
for CsCl type. = [ 0.0958 

Therefore, the ground-state energy is 

4(H) 
N J ( 0 )  - { -- - (0.073 - 0.0080) 

-- i - (0.097 - 0.0131) for NaCl type 
for CsCl type. 

In the approximation of the free spin wave, the ground-state energy is 

-- 

4(% + HZ) = [ -- - 0.097 for NaCl type 
N J W  -- - 0.073 for CsCl type. 

The total correction of interaction in the first-order approximation is 0.0131 for NaC1-type 
and 0.008 for CsC1-type systems. However, according to the results obtained by Oguchi 
[9], where they considered a part of the dynamic interactions only, the values are -0.0047 
for NaCI-type and -0.0027 for CsC1-type systems, where we can find that the kinematic 
interaction seems very important and could not be neglected. Our calculation is only in the 
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first-order approximation; it might change significantly for a higher-order approximation. 
However, the cancellation of the total kinematic interactions might not be expected. 

In conclusion, we have developed a complete Bose transformation for a spin system with 
any value of S based on the step operator representation. A model Hamiltonian has been 
found which is simpler and has exactly the same eigenvalues as the original Hamiltonian. 
The method has been extended to the Schwinger boson transformation. An example of an 
application our method has been shown for an isotropic antiferromagnetic Heisenberg model. 
The calculation shows that the constraints in the transformation could be treated as part of 
a total interaction including both the dynamic and kinematic interactions, and the kinematic 
interaction is important as well as dynamic interaction for quantum antiferromagnetic 
systems. The method can be extended to any magnetic system in studying the ground- 
state and low-temperature properties, such as the system including the uniaxial crystal-field 
anisotropy term ( D  Ci(S:)2). biquadratic anisotropic exchange interaction between nearest- 
neighbour spin Si and Sj Z(i - j)(Sf . Sjf)2), and perhaps other interesting systems 
including spin operators. The method could be considered as an extension of conventional 
spin wave theory. More applications should be investigated in the future. 
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